
August 22, 2023

Automating logo revisions
with ChatGPT

Dubberly Design Office

The DrumWave logo is a Venn diagram of 7 sets.

Each of the 7 sets is assigned a base color, and the remaining 120

regions are colored an average of the overlapping sets.

Dubberly Design Office

1

2

3

45

6

7

The problem:

When tweaking the 7 base colors,

120 averages have to be calculated

in order to produce a new version of the logo.

Dubberly Design Office

?

This could be done by hand —

but it is time consuming and there is a high probability of error.

Dubberly Design Office

This could be done with a program —

but I don’t know how to code,

and the office developer is busy.

Dubberly Design Office

Can we leverage AI to write a program for us?

Dubberly Design Office

Using ChatGPT is like having a conversation.

Each thread is a cycle of prompts from the user,

and responses from the model.

user chatGPT

prompt

response

First I ask it how to solve our problem.

Dubberly Design Office

Prompt:

I am making a picture of a seven set venn diagram.

Every section overlaps every other section in all possible combinations,

resulting in 128 individual sections.

If each of the seven sets is a specific color (hex value),

and every section is the average color of the sets that overlap in it,

how can I calculate the colors for all 128 sections?

user chatGPT

prompt

response

GPT responds.

Dubberly Design Office

Prompt:

I am making a picture of a seven set venn diagram.

Every section overlaps every other section in all possible combinations,

resulting in 128 individual sections.

If each of the seven sets is a specific color (hex value),

and every section is the average color of the sets that overlap in it,

how can I calculate the colors for all 128 sections?

Response

To calculate the average color for each of the 128 sections in a seven-set Venn diagram,

where each section represents the overlapping sets, you can follow these steps

 Assign a specific color (hex value) to each of the seven sets in your diagram.  
Let's denote the colors as C1, C2, C3, C4, C5, C6, and C7

 Enumerate all the possible combinations of overlapping sets.  
In this case, since there are seven sets, there will be 2^7 = 128 combinations

 For each combination, determine which sets overlap. 
Represent the presence or absence of a particular set in the combination using binary digits, 
where 1 represents the presence of the set and 0 represents its absence. 
For example, if the combination is {C1, C3, C4, C7}, it can be represented as 1100101, 
where the first digit corresponds to C1, the second to C2, and so on. 

user chatGPT

prompt

response

This confirms that the model understands what we are asking for.

The next step is to ask it for a program that solves it for us.

Dubberly Design Office

user chatGPT

prompt

list program

Prompt:

can you write a program that does this?

Response:

from itertools import combinations

Hex color values for each set

colors = {

 'C1': '#FF0000',

 'C2': '#00FF00',

 'C3': '#0000FF',

 'C4': '#FFFF00',

 'C5': '#FF00FF',

 'C6': '#00FFFF',

 'C7': '#FFFFFF'

}

Function to calculate average color

def calculate_average_color(combination):

 total_r, total_g, total_b = 0, 0, 0

 num_sets = sum(combination)

 for i, present in enumerate(combination):

 if present:

 color = colors[f'C{i+1}']

 r, g, b = int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16)

 total_r += r

 total_g += g

 total_b += b

 average_r = total_r // num_sets

 average_g = total_g // num_sets

: {average_color}")

Now we ask how to run the program.

Dubberly Design Office

user chatGPT

prompt

list program

Prompt:

how would I run this?

Response:

To run the Python program, you can follow these steps
 Install Python: Make sure you have Python installed on your computer.  

You can download the latest version of Python from the official Python website  
(https://www.python.org/downloads/) 
and follow the installation instructions for your operating system

 Set up a text editor or integrated development environment (IDE):  
Choose a text editor or IDE to write and run your Python code.  
Popular options include Visual Studio Code, PyCharm, Sublime Text, 
or the built-in IDLE editor that comes with the Python installation

 Create a new Python file: Open your preferred text editor or IDE and create a 
new file with a .py extension. For example, you can name it venn_diagram.py

 Copy the program code: Copy the entire code provided in the previous response 
and paste it into the newly created Python file

 Save the file: Save the Python file
 Run the program: Open your command prompt or terminal, 

navigate to the directory where you saved the Python file 
(venn_diagram.py), and execute the following command: 
python venn_diagram.p

 bashCopy cod
 python venn_diagram.p
 This command runs the Python program and initiates the calculation of the average  

colors for each section. The results will be displayed in the command prompt or terminal.

Ensure that you have Python correctly installed and that the 
Python executable is added to your system's PATH environment variable. This allows you to ru 
 Python programs from any directory without specifying the full path to the Python interpreter.

Note: The program assumes you have Python 3.x installed. If you have both Python 2.x and 3 
.x installed, you may need to replace python with python3 in the command mentioned above.

Please let me know if you need further assistance!

https://www.python.org/downloads/

To run the program,

I downloaded python,

copied the code into TextEdit,

saved it to a new folder as a python file (.py),

navigated to the folder within terminal

and ran the program using the command:

python3 programName.py

Dubberly Design Office

We now have a program that outputs a list of all 127 colors,

given the 7 base colors.

Dubberly Design Office

user chatGPT

prompt

list program

Next, we ask the model to update the program to output

an .svg of the color palette,

so that we can import the colors into Adobe Illustrator

Dubberly Design Office

user chatGPT

prompt

list program

Prompt:

Now can you write the program,

but instead of outputting a list,

it outputs an .svg file of all the color combinations

as squares, organized by how many colors

are in the combinations?

The first attempt gives us a palette where the colors are overlapping.

Dubberly Design Office

user chatGPT

prompt

list program

(All the colors are in this file,

but they are overlapping each other)

Prompt:

Now can you write the program,

but instead of outputting a list,

it outputs an .svg file of all the color combinations

as squares, organized by how many colors

are in the combinations?

Response output:

So we refine our prompt, and this time the canvas size is too small.

Dubberly Design Office

user chatGPT

prompt

list program

Prompt: 

can you edit this code

so that the rectangles do not overlap?

Response output:

We ask for a bigger canvas size, and now we have the full palette.

Dubberly Design Office

user chatGPT

prompt

list program

Prompt:

it works but the .svg is not tall enough

 to fit all the squares

Response output:

We ask for a labels on the palette,

so we know which base colors are in the combinations.

Dubberly Design Office

user chatGPT

prompt

list program

Prompt:

Can you edit this code

so that every square

is labeled with the

corresponding combination?

(1,) (2,) (3,) (4,) (5,) (6,)

(7,) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(1, 7) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7)

(3, 4) (3, 5) (3, 6) (3, 7) (4, 5) (4, 6)

(4, 7) (5, 6) (5, 7) (6, 7) (1, 2, 3) (1, 2, 4)

(1, 2, 5) (1, 2, 6) (1, 2, 7) (1, 3, 4) (1, 3, 5) (1, 3, 6)

(1, 3, 7) (1, 4, 5) (1, 4, 6) (1, 4, 7) (1, 5, 6) (1, 5, 7)

(1, 6, 7) (2, 3, 4) (2, 3, 5) (2, 3, 6) (2, 3, 7) (2, 4, 5)

(2, 4, 6) (2, 4, 7) (2, 5, 6) (2, 5, 7) (2, 6, 7) (3, 4, 5)

(3, 4, 6) (3, 4, 7) (3, 5, 6) (3, 5, 7) (3, 6, 7) (4, 5, 6)

(4, 5, 7) (4, 6, 7) (5, 6, 7) (1, 2, 3, 4) (1, 2, 3, 5) (1, 2, 3, 6)

(1, 2, 3, 7) (1, 2, 4, 5) (1, 2, 4, 6) (1, 2, 4, 7) (1, 2, 5, 6) (1, 2, 5, 7)

(1, 2, 6, 7) (1, 3, 4, 5) (1, 3, 4, 6) (1, 3, 4, 7) (1, 3, 5, 6) (1, 3, 5, 7)

(1, 3, 6, 7) (1, 4, 5, 6) (1, 4, 5, 7) (1, 4, 6, 7) (1, 5, 6, 7) (2, 3, 4, 5)

(2, 3, 4, 6) (2, 3, 4, 7) (2, 3, 5, 6) (2, 3, 5, 7) (2, 3, 6, 7) (2, 4, 5, 6)

(2, 4, 5, 7) (2, 4, 6, 7) (2, 5, 6, 7) (3, 4, 5, 6) (3, 4, 5, 7) (3, 4, 6, 7)

(3, 5, 6, 7) (4, 5, 6, 7) (1, 2, 3, 4, 5) (1, 2, 3, 4, 6) (1, 2, 3, 4, 7) (1, 2, 3, 5, 6)

(1, 2, 3, 5, 7) (1, 2, 3, 6, 7) (1, 2, 4, 5, 6) (1, 2, 4, 5, 7) (1, 2, 4, 6, 7) (1, 2, 5, 6, 7)

(1, 3, 4, 5, 6) (1, 3, 4, 5, 7) (1, 3, 4, 6, 7) (1, 3, 5, 6, 7) (1, 4, 5, 6, 7) (2, 3, 4, 5, 6)

(2, 3, 4, 5, 7) (2, 3, 4, 6, 7) (2, 3, 5, 6, 7) (2, 4, 5, 6, 7) (3, 4, 5, 6, 7) (1, 2, 3, 4, 5, 6)

(1, 2, 3, 4, 5, 7) (1, 2, 3, 4, 6, 7) (1, 2, 3, 5, 6, 7) (1, 2, 4, 5, 6, 7) (1, 3, 4, 5, 6, 7) (2, 3, 4, 5, 6, 7)

(1, 2, 3, 4, 5, 6, 7)

Response output:

Even with the ability to generate a labeled color palette,

New versions of the logo still need to be filled in manually

with the eyedropper tool.

(1,) (2,) (3,) (4,) (5,) (6,)

(7,) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(1, 7) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7)

(3, 4) (3, 5) (3, 6) (3, 7) (4, 5) (4, 6)

(4, 7) (5, 6) (5, 7) (6, 7) (1, 2, 3) (1, 2, 4)

(1, 2, 5) (1, 2, 6) (1, 2, 7) (1, 3, 4) (1, 3, 5) (1, 3, 6)

(1, 3, 7) (1, 4, 5) (1, 4, 6) (1, 4, 7) (1, 5, 6) (1, 5, 7)

(1, 6, 7) (2, 3, 4) (2, 3, 5) (2, 3, 6) (2, 3, 7) (2, 4, 5)

(2, 4, 6) (2, 4, 7) (2, 5, 6) (2, 5, 7) (2, 6, 7) (3, 4, 5)

(3, 4, 6) (3, 4, 7) (3, 5, 6) (3, 5, 7) (3, 6, 7) (4, 5, 6)

(4, 5, 7) (4, 6, 7) (5, 6, 7) (1, 2, 3, 4) (1, 2, 3, 5) (1, 2, 3, 6)

(1, 2, 3, 7) (1, 2, 4, 5) (1, 2, 4, 6) (1, 2, 4, 7) (1, 2, 5, 6) (1, 2, 5, 7)

(1, 2, 6, 7) (1, 3, 4, 5) (1, 3, 4, 6) (1, 3, 4, 7) (1, 3, 5, 6) (1, 3, 5, 7)

(1, 3, 6, 7) (1, 4, 5, 6) (1, 4, 5, 7) (1, 4, 6, 7) (1, 5, 6, 7) (2, 3, 4, 5)

(2, 3, 4, 6) (2, 3, 4, 7) (2, 3, 5, 6) (2, 3, 5, 7) (2, 3, 6, 7) (2, 4, 5, 6)

The next step is to automate the process entirely.

user chatGPT

prompt

logo generator program

First I tried prompting chatGPT with an .svg of the unfilled logo,

and ask it to write a program to color it in.

The .svg is longer than ChatGPT’s context window,

it cannot generate a response.

Dubberly Design Office

! The message you submitted was too long, please reload the conversation and submit something shorter.

How can we prompt ChatGPT to write a program to modify an .svg

that it cannot read?

The .svg of the logo contains a list of styles 
containing all of the hex codes in the logo.

We need a program that can identify these hex codes,

and replace them.

Dubberly Design Office

We prompt ChatGPT to create a program that scrapes all hex codes

from any given .svg.

Dubberly Design Office

Can you write a program that takes an .svg as an input,

and extracts all the hex codes for the fill colors

and outputs a list of them?

user chatGPT

prompt

hex code extractor

It responds with a program.

Dubberly Design Office

Can you write a program that takes an .svg as an input,

and extracts all the hex codes for the fill colors

and outputs a list of them?

import re

def extract_fill_hexcodes(svg_content):

 # Regular expression pattern to find fill attributes with hexcodes

 pattern = r'fill="#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})"'

 fill_hexcodes = re.findall(pattern, svg_content)

 return fill_hexcodes

def main():

 input_svg_file = "input.svg" # Replace with your input SVG file path

 output_file = "fill_hexcodes.txt" # Replace with the desired output file path

 with open(input_svg_file, "r") as file:

 svg_content = file.read()

 fill_hexcodes = extract_fill_hexcodes(svg_content)

 with open(output_file, "w") as output:

 for hexcode in fill_hexcodes:

 output.write(hexcode + "\n")

 print("Fill hexcodes extracted and saved to", output_file)

if __name__ == "__main__":

 main()

`

user chatGPT

prompt

hex code extractor

If we pass it the DrumWave logo, it outputs a list of all 127 colors.

Dubberly Design Office

BF00E5

FF8D00

AA8D00

AA7355

D43855

FF3844

AAAA00

AA9055

D45555

FF5544

559055

7F5555

AA5544

7F3BAA

AA3B99

D40099

AAE200

AAC855

D48D55

FF8D44

55C855

7F8D55

AA8D44

7F73AA

AA7399

D43899

55E555

7FAA55

AAAA44

7F90AA

AA9099

D45599

2A90AA

559099

7F5599

7F3BEE

BFAA00

BF963F

DF6A3F

FF6A33

7F963F

9F6A3F

BF6A33

9F567F

BF5672

DF2A72

7FAB3F

9F7F3F

BF7F33

9F6C7F

BF6C72

DF3F72

5F6C7F

7F6C72

9F3F72

9F2CB2

7FD63F

9FAA3F

BFAA33

9F967F

BF9672

DF6A72

5F967F

7F9672

9F6A72

9F56B2

5FAB7F

7FAB72

9F7F72

9F6CB2

5F6CB2

99AB33

B28833

CC8828

B27866

CC785B

E5555B

7F7866

99785B

B2555B

B2458E

7F8966

99895B

B2665B

B2568E

7F568E

7FAB66

99AB5B

B2885B

B2788E

7F788E

7F898E

948E55

AA8E4C

BF714C

BF6477

946477

947277

948E77

A47A66

import re

def extract_fill_hexcodes(svg_content):

 # Regular expression pattern to find fill attributes with hexcodes

 pattern = r'fill="#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})"'

 fill_hexcodes = re.findall(pattern, svg_content)

 return fill_hexcodes

def main():

 input_svg_file = "input.svg" # Replace with your input SVG file path

 output_file = "fill_hexcodes.txt" # Replace with the desired output file path

 with open(input_svg_file, "r") as file:

 svg_content = file.read()

 fill_hexcodes = extract_fill_hexcodes(svg_content)

 with open(output_file, "w") as output:

 for hexcode in fill_hexcodes:

 output.write(hexcode + "\n")

 print("Fill hexcodes extracted and saved to", output_file)

if __name__ == "__main__":

 main()

`

We already have a program from our first thread

that outputs a new list of hex codes given 7 base colors.

Dubberly Design Office

List thread Hex code extractor thread

user chatGPT

prompt

list program

user chatGPT

prompt

hex code replace

We copy the code from our first thread into a prompt in the current thread,

asking Chat GPT to combine the two programs.

Dubberly Design Office

user chatGPT

prompt

list program

user chatGPT

prompt

hex code replace

List thread Hex code extractor thread

user chatGPT

prompt

list program

user chatGPT

prompt

hex code replace

Our final program written by ChatGPT:

Dubberly Design Office

Takes an .svg

and 7 base colors

as input

Generates the

127 combinations

Scrapes the .svg

for hex codes

replaces the hex codes

with the new list

output a

recolored .svg

'#FF00FF', 
'#00FFFF', 
'#FF4500', 
'#00FF00', 
'#FFA500', 
'#800080', 
'#FFFF00'

Generating new versions of the logo is now trivial.

Dubberly Design Office

A p p e n d i x

How to create new logos

Dubberly Design Office

New versions can be created with two simple steps,

Step 1:

on line 40, enter the file name of the svg you wish to modify:

input_svg_file = # Replace with your input SVG file path

"dw_logo.svg"

Dubberly Design Office

Step 2:

on lines 43 - 49, replace the 7 base hex codes with your desired palette:

base_hexcodes = [

]

Run the program, and the svg file will be rewritten

with your desired colors.

'#FF0000',

'#FF3333',

'#FF6666',

'#FF9999',

'#FFCCCC',

'#FF6666',

'#FF3333'

Dubberly Design Office

A p p e n d i x

Prompts, responses, and code

Dubberly Design Office

Prompt:

i am making a picture of a seven set venn diagram. every section overlaps every other section in all possible combinations, resulting in 128 individual sections. If
each of the seven sets is a specific color (hex value), and every section is the average color of the sets that overlap in it, how can I calculate the colors for all
128 sections?

Response:

To calculate the average color for each of the 128 sections in a seven-set Venn diagram, where each section represents the overlapping sets, you can follow
these steps

 Assign a specific color (hex value) to each of the seven sets in your diagram. Let's denote the colors as C1, C2, C3, C4, C5, C6, and C7
 Enumerate all the possible combinations of overlapping sets. In this case, since there are seven sets, there will be 2^7 = 128 combinations
 For each combination, determine which sets overlap. Represent the presence or absence of a particular set in the combination using binary digits, where 1

represents the presence of the set and 0 represents its absence. For example, if the combination is {C1, C3, C4, C7}, it can be represented as 1100101, where
the first digit corresponds to C1, the second to C2, and so on

 Calculate the average color for each section by taking the weighted average of the colors of the overlapping sets. For each set present in the combination,
multiply its color value (RGB values or hex code) by the corresponding binary digit (1 or 0). Sum up the resulting color values for all the sets present in the
combination. Finally, divide the sum by the number of sets present to get the average color

 Repeat steps 3-4 for all 128 combinations, and you will obtain the average color for each section in your Venn diagram.

Note that the calculation of average color can be done using RGB values or hex codes, depending on the format you prefer to work with. Ensure that you
correctly handle the conversion between different color formats, if necessary.

By following these steps, you should be able to determine the average color for each of the 128 sections in your seven-set Venn diagram.

Dubberly Design Office

Prompt:

can you write a program that does this

Response:

Certainly! Here's an example of a Python program that calculates the average color for each section in a seven-set Venn diagram:

pythonCopy code

from itertools import combinations # Hex color values for each set colors = { 'C1': '#FF0000', 'C2': '#00FF00', 'C3': '#0000FF', 'C4': '#FFFF00', 'C5': '#FF00FF', 'C6':
'#00FFFF', 'C7': '#FFFFFF' } # Function to calculate average color def calculate_average_color(combination): total_r, total_g, total_b = 0, 0, 0 num_sets =
sum(combination) for i, present in enumerate(combination): if present: color = colors[f'C{i+1}'] r, g, b = int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16)
total_r += r total_g += g total_b += b average_r = total_r // num_sets average_g = total_g // num_sets average_b = total_b // num_sets average_color =
f'#{average_r:02X}{average_g:02X}{average_b:02X}' return average_color # Generate all combinations of sets combinations_list = list(combinations(range(1, 8),
1)) + list(combinations(range(1, 8), 2)) + \ list(combinations(range(1, 8), 3)) + list(combinations(range(1, 8), 4)) + \ list(combinations(range(1, 8), 5)) +
list(combinations(range(1, 8), 6)) + \ list(combinations(range(1, 8), 7)) # Calculate average color for each section for combination in combinations_list:
binary_combination = [1 if i+1 in combination else 0 for i in range(7)] average_color = calculate_average_color(binary_combination) print(f"Combination:
{combination}, Average Color: {average_color}")

In this program, the colors dictionary holds the hex color values for each set (C1 to C7). The calculate_average_color function takes a combination (represented
as a binary list) and calculates the average color based on the presence of each set. The program then generates all possible combinations using the
combinations function from the itertools module. Finally, it iterates over each combination, converts it to a binary representation, and calls the
calculate_average_color function to obtain the average color for that section. The results are then printed for each combination.

Feel free to customize the program by adding or modifying the hex color values in the colors dictionary to match your desired colors for each set.

(The code was written with good style, indents and line breaks, it has been compressed to fit on the page)

Dubberly Design Office

Prompt:

can you write a program that takes an svg as an input, and extracts all the hexcodes for the fill colors and outputs a list of them?

Response:

Sure! Below is a Python program that takes an SVG file as input, extracts all the hexcodes for the fill colors, and outputs a list of them.

pythonCopy code

import re def extract_fill_hexcodes(svg_content): # Regular expression pattern to find fill attributes with hexcodes pattern = r'fill="#([A-Fa-f0-9]{6}|[A-Fa-f0-9]
{3})"' fill_hexcodes = re.findall(pattern, svg_content) return fill_hexcodes def main(): input_svg_file = "input.svg" # Replace with your input SVG file path
output_file = "fill_hexcodes.txt" # Replace with the desired output file path with open(input_svg_file, "r") as file: svg_content = file.read() fill_hexcodes =
extract_fill_hexcodes(svg_content) with open(output_file, "w") as output: for hexcode in fill_hexcodes: output.write(hexcode + "\n") print("Fill hexcodes extracted
and saved to", output_file) if __name__ == "__main__": main()

To use this program, make sure you have Python installed on your machine, and replace "input.svg" with the path to your SVG file. After running the program, it
will create a new file named "fill_hexcodes.txt" in the same directory, containing all the extracted fill color hexcodes, one per line.

Dubberly Design Office

Prompt:

from itertools import combinations  

Hex color values for each set 
colors = { 
 'C1': '#FF0000', 
 'C2': '#FFAA00', 
 'C3': '#FFFF00', 
 'C4': '#00FF00', 
 'C5': '#00B1FF', 
 'C6': '#8000FF', 
 'C7': '#FF00CC' 
}  

Function to calculate average color 
def calculate_average_color(combination): 
 total_r, total_g, total_b = 0, 0, 0 
 num_sets = sum(combination)  

 for i, present in enumerate(combination): 
 if present: 
 color = colors[f'C{i+1}'] 
 r, g, b = int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16) 
 total_r += r 
 total_g += g 
 total_b += b  

 average_r = total_r // num_sets 
 average_g = total_g // num_sets 
 average_b = total_b // num_sets  

 average_color = f'#{average_r:02X}{average_g:02X}{average_b:02X}' 
 return average_color  

Generate all combinations of sets 
combinations_list = list(combinations(range(1, 8), 1)) + list(combinations(range(1, 8), 2)) + \ 
 list(combinations(range(1, 8), 3)) + list(combinations(range(1, 8), 4)) + \ 
 list(combinations(range(1, 8), 5)) + list(combinations(range(1, 8), 6)) + \ 
 list(combinations(range(1, 8), 7))  

Calculate average color for each section 
for combination in combinations_list: 
 binary_combination = [1 if i+1 in combination else 0 for i in range(7)] 
 average_color = calculate_average_color(binary_combination) 
 print(f"Combination: {combination}, Average Color: {average_color}")

(re-entering the list program as a prompt)

Dubberly Design Office

Response:

The provided code defines a function to calculate the average color of selected sets from a given set of colors represented by hexcodes. It then generates all
possible combinations of the sets and calculates the average color for each combination.

Let's understand the code step by step

 The colors dictionary contains the names and corresponding hex color values of each set
 The function calculate_average_color takes a combination (represented as a list of 1's and 0's) and calculates the average color of the selected sets
 The list combinations_list contains all possible combinations of the sets from 1 to 7
 For each combination in combinations_list, it converts the combination into a binary representation, calls the calculate_average_color function to compute

the average color, and then prints the combination along with its average color.

Note: The code uses the itertools.combinations function to generate the combinations.

If you run this code, it will output all the possible combinations of sets and their corresponding average colors. Keep in mind that the number of combinations is
large, so there will be many lines of output.

For example, if you want to select 3 sets and find their average color, you will find combinations like:

yamlCopy code

Combination: (1, 2, 3), Average Color: #FF7F00 Combination: (1, 2, 4), Average Color: #BF7F00 Combination: (1, 2, 5), Average Color: #BF3F7F Combination: (1, 2, 6),
Average Color: #FF3F7F ...

These lines indicate that for each combination of three sets, the average color is calculated and displayed as a hexcode.

Dubberly Design Office

Prompt:

can you write a program that takes the out put of the program I just sent, (a list of hexcodes) and replaces the hexcodes of a given svg (like the program you
wrote above)

Response:

Sure! We can modify the program to take the output of the previous program (the list of hexcodes) and replace the hexcodes of a given SVG file with those
extracted hexcodes. We'll update the SVG file directly, so make sure to keep a backup of the original SVG file just in case.

Here's the modified program:

import re def extract_fill_hexcodes(svg_content): # Regular expression pattern to find fill attributes with hexcodes pattern = r'fill="#([A-Fa-f0-9]{6}|[A-Fa-f0-9]
{3})"' fill_hexcodes = re.findall(pattern, svg_content) return fill_hexcodes def replace_fill_hexcodes(svg_content, new_hexcodes): # Regular expression pattern
to find fill attributes with hexcodes pattern = r'fill="#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})"' def replace_func(match): return f'fill="{new_hexcodes.pop(0)}"' # Replace
hexcodes using re.sub and the custom replace_func new_svg_content = re.sub(pattern, replace_func, svg_content) return new_svg_content def main():
input_svg_file = "input.svg" # Replace with your input SVG file path output_file = "fill_hexcodes.txt" # Replace with the output file from the previous program #
Read the SVG file with open(input_svg_file, "r") as file: svg_content = file.read() # Read the list of hexcodes from the output file with open(output_file, "r") as
hexcode_file: new_hexcodes = [line.strip() for line in hexcode_file] # Ensure the number of extracted hexcodes matches the number of sets in the SVG if
len(new_hexcodes) != 7: print("Error: The number of extracted hexcodes does not match the number of sets in the SVG.") return # Replace the hexcodes in the
SVG new_svg_content = replace_fill_hexcodes(svg_content, new_hexcodes) # Write the updated SVG content back to the file with open(input_svg_file, "w") as
file: file.write(new_svg_content) print("Hexcodes replaced in the SVG file.") if __name__ == "__main__": main()

To use this program, make sure you have Python installed on your machine, and replace "input.svg" with the path to your SVG file and "fill_hexcodes.txt" with the
path to the output file generated by the previous program.

The program reads the SVG content from the input file, reads the list of new hexcodes from the output file, and then replaces the hexcodes in the SVG content
using the replace_fill_hexcodes function. The updated SVG content is then written back to the input SVG file.

Please use this program with caution and make sure to back up your original SVG file before running it.

Dubberly Design Office

Prompt:

can you combine the programs so that it is one program that takes as input an svg file and seven base hexcodes

Response:

Sure! Here's a combined program that takes an SVG file as input and seven base hexcodes. It will extract the fill hexcodes from the SVG, calculate the average colors for all
combinations of base hexcodes, and then replace the original hexcodes in the SVG with the calculated average colors.

import re from itertools import combinations def extract_all_hexcodes(svg_content): # Regular expression pattern to find hexcodes in fill and stroke attributes pattern = r'(#(?:[A-Fa-
f0-9]{6}|[A-Fa-f0-9]{3}))' all_hexcodes = re.findall(pattern, svg_content) return all_hexcodes def calculate_average_color(combination, base_colors): total_r, total_g, total_b = 0, 0, 0
num_sets = sum(combination) for i, present in enumerate(combination): if present: color = base_colors[i] r, g, b = int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16) total_r += r
total_g += g total_b += b average_r = total_r // num_sets average_g = total_g // num_sets average_b = total_b // num_sets average_color = f'#{average_r:02X}{average_g:02X}
{average_b:02X}' return average_color def replace_all_hexcodes(svg_content, new_hexcodes): # Regular expression pattern to find hexcodes in fill and stroke attributes pattern =
r'(#(?:[A-Fa-f0-9]{6}|[A-Fa-f0-9]{3}))' def replace_func(match): return new_hexcodes.pop(0) # Replace hexcodes using re.sub and the custom replace_func new_svg_content =
re.sub(pattern, replace_func, svg_content) return new_svg_content def main(): input_svg_file = "input.svg" # Replace with your input SVG file path base_hexcodes = ['#FF0000', # C1
'#FFAA00', # C2 '#FFFF00', # C3 '#00FF00', # C4 '#00B1FF', # C5 '#8000FF', # C6 '#FF00CC', # C7] # Read the SVG file with open(input_svg_file, "r") as file: svg_content = file.read() #
Extract all the hexcodes from the SVG extracted_hexcodes = extract_all_hexcodes(svg_content) # Ensure the number of extracted hexcodes matches the number of sets in the SVG
if len(extracted_hexcodes) != len(base_hexcodes): print("Error: The number of extracted hexcodes does not match the number of base hexcodes.") return # Generate all
combinations of sets combinations_list = list(combinations(range(1, len(base_hexcodes) + 1), 1)) + \ list(combinations(range(1, len(base_hexcodes) + 1), 2)) + \
list(combinations(range(1, len(base_hexcodes) + 1), 3)) + \ list(combinations(range(1, len(base_hexcodes) + 1), 4)) + \ list(combinations(range(1, len(base_hexcodes) + 1), 5)) + \
list(combinations(range(1, len(base_hexcodes) + 1), 6)) + \ list(combinations(range(1, len(base_hexcodes) + 1), 7)) # Calculate average color for each section and create a list of
average hexcodes average_hexcodes = [] for combination in combinations_list: binary_combination = [1 if i+1 in combination else 0 for i in range(len(base_hexcodes))]
average_color = calculate_average_color(binary_combination, base_hexcodes) average_hexcodes.append(average_color) # Replace all the hexcodes in the SVG with the
calculated average hexcodes new_svg_content = replace_all_hexcodes(svg_content, average_hexcodes) # Write the updated SVG content back to the file with
open(input_svg_file, "w") as file: file.write(new_svg_content) print("Hexcodes replaced in the SVG file.") if __name__ == "__main__": main()

This updated program uses the extract_all_hexcodes function to extract all the hexcodes from both fill and stroke attributes of the input SVG file. It then calculates the average
color for each combination of sets and replaces all the hexcodes in the SVG with the calculated average colors using the replace_all_hexcodes function.

The program reads the SVG content from the input file, extracts the hexcodes, and replaces them with the calculated average colors. The input_svg_file variable should be set to
the path of your input SVG file.

Dubberly Design Office

