
June 26, 2023

Text-to-text AI
Self-attention

Dubberly Design Office

GPT is Open AI’s large language model.

It generates human-like text in response to a prompt.

Dubberly Design Office

ChatGPT is a front end for the model,

where users can interact with it as a chatbot.

Dubberly Design Office

users:

input text

GPT generates:

output text

GPT has 3 main parts:

The tokenizer, the embedding matrix, and the transformer.

Dubberly Design Office

tokenizer embedding matrix transformer

Let’s start with a simple overview.

First the user inputs text as a prompt.

Dubberly Design Office

imput text

The text is passed to the tokenizer.

Dubberly Design Office

imput text tokenizer

The tokenizer breaks up the input into a set of tokens.

Dubberly Design Office

imput text tokenizer tokens

The tokens are sent to the embedding matrix.

Dubberly Design Office

imput text tokenizer embedding matrixtokens

The tokens are assigned their respective vector embeddings.

Dubberly Design Office

imput text tokenizer embedding matrix input embeddingtokens

The vector embeddings are sent to the transformer.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embeddingtokens

The transformer transforms the embeddings into the embedding for the next token.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embeddingtokens output embedding

The output embeddings are sent back to the embedding matrix.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embeddingtokens output embedding

The output embedding is multiplied by the matrix,

resulting in a list of probabilities for all the tokens in the vocabulary.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

The output token is selected from the top of this list,

appended to the input, and passed back through the system to predict the next token.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

Let’s follow the input “The chicken crossed” through the model.

First, it is input as a prompt by the user.

Dubberly Design Office

imput text

“The chicken crossed”

Then it is split up by the tokenizer

Dubberly Design Office

tokenizer tokens

the
chicken
crossed

Each token is converted into its vector embedding by the embedding matrix.

Dubberly Design Office

embedding matrix input embeddingtokens

the

chicken

crossed

[99, 01, 16, ... 86]

[44, 12, 31, ... 42]

[74, 13, 02, ... 25]

Then, each token embedding in processed by the transformer on its own path.

Dubberly Design Office

transformerinput embedding

[99, 01, 16, ... 86]

[44, 12, 31, ... 42]

[74, 13, 02, ... 25]

Each embedding is transformed, but only the last one is used to predict the next token.

Dubberly Design Office

transformerinput embedding output embedding

[99, 01, 16, ... 86]

[44, 12, 31, ... 42]

[74, 13, 02, ... 25]

[80, 12, 14, ... 71]

[21, 02, 13, ... 32]

[63, 52, 11, ... 94]

The output token is passed back and multiplied by the embedding matrix,

to generate a list of probabilities for all tokens in the models vocabulary.

Dubberly Design Office

embedding matrix output embedding

[63, 52, 11, ... 94]

The one of the most probable tokens in the list is chosen as the next token

in the sequence, and outputted by the model.

Choosing the most probable token every time yields very repetitive and robot like text.

Occasionally choosing from the runner ups yields more creative sounding results.

This is a variable called temperature.

Bing’s AI chat lets users adjust this setting.

Dubberly Design Office

embedding matrix output text

“the”

The output is appended to the input,

and the process starts again with the new phrase “The chicken crossed the”

Dubberly Design Office

imput text output text

“The chicken crossed the”

Through the system again, we get the complete phrase

“The chicken crossed the road”

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

“The chicken crossed the road”

Once more through the cycle, and the model predicts the end token,

ending the text generation, and leaving us with the final output.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

“The chicken crossed the road” <<END>>

Simply put, the initial prompt is used to predict the next token.

Dubberly Design Office

prompt next token

used to predict

The next token is appended to the prompt, and the cycle repeats.

Dubberly Design Office

prompt next token

used to predict

appended to

Until the end token is predicted, and the text generation stops.

Dubberly Design Office

prompt next token final output

used to predict

appended to end token is predicted

The tokenizer

Dubberly Design Office

The tokenizer breaks up the input into individual tokens from the system’s vocabulary.

Often, each word is a token.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

the chicken crossed the road

the
chicken
crossed
the
road

Longer words can also be made up of multiple tokens.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

swimmingly

con
vers
ate

conversate

sw
imming
ly

There are also special tokens,

such as the end token to stop text generation,

and the line break token, to start a new line.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

<<END>>

\n

<|endoftext|>

ends text generation

line break

used during training

to separate documents

The embedding matrix

Dubberly Design Office

The embedding matrix a two column matrix.

The first column is every token in the system’s vocabulary,

and the second is each token’s corresponding vector embedding.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

Aardvark

A

Ability

.

.

.

.

.

.

.

.

Zyzzyva

[98, 07,11..., 86]

[33, 22,14...,91]

[02, 70, 53...,12]

.

.

.

.

.

.

.

.

[22, 89, 31..., 42]

The vector embedding describe a high dimensional meaning space.

Each embedding is a set of coordinate that define a tokens meaning

in relation to all other tokens

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

Aardvark
A
Ability
.
.
.
.
.
.
.
.
Zyzzyva

[98, 07,11..., 86]
[33, 22,14...,91]
[02, 70, 53...,12]
.
.
.
.
.
.
.
.
[22, 89, 31..., 42]

cat
dog

bird

animal

run

walk

swin

yellow
green

red

happy

birthday

This is a 2-dimensional representation of the space,

the actual embedding vectors are of over 12,000 dimensions

The transformer

Dubberly Design Office

The transformer is a stack of decoder blocks.

Each block takes the input of the previous one and passes it up the chain to the next one.

The final block outputs the prediction for the next token.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

decoder block

decoder block

decoder block

decoder block

decoder block

Each one of these layers contains a neural network with millions of parameters.

These parameters are initialized randomly,

and updated during training to allow the system

to make accurate predictions.

Dubberly Design Office

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

The decoder block architecture is the same for each block,

but only the last output is used for the prediction.

The middle decoder outputs are referred to as hidden states.

Dubberly Design Office

􀋭

imput text tokenizer embedding matrix transformerinput embedding output texttokens output embedding

decoder block

decoder block

decoder block

decoder block

decoder block

􀋯

􀋯

􀋯

􀋯

decoder block
decoder block

decoder block

decoder block

feed forward neural net

self attention layer

Each decoder block contains two sublayers.

The self attention layer:

looks back on previous tokens, it is what gives the model

the ability to understand context.

The feed forward neural network:

is what makes the prediction for the next token,

and passes it to the next layer.

Dubberly Design Office

Self attention

For each track, all tokens to the left of the current token

are weighted in terms of relevance

(to the current token).

Dubberly Design Office

The chicken crossed
The

chicken

crossed

the

The token embeddings are multiplied by their weights,

and concatenated to the current token embedding.

Tokens with greater weights

(more relevant in the given context)

will make up a larger part

of the merged embedding.

Dubberly Design Office

The
chicken

crossed

the

The + chicken + =crossed

As the embeddings are passed up the stack,

the meaning within context is baked into the model.

Dubberly Design Office

The
chicken

crossed

the

This series of simple steps and calculations

creates the complex results we see from ChatGPT.

Dubberly Design Office

Through the training and adjusting of its billions of parameters,

GPT is able to display remarkable emergent behaviors.

Such as�

� writing a poem with a specified structur�
� writing computer code in a specific languag�
� summarizing and writing essay�
� emulating styles of writin�
� making joke�
� editing its own writing

Dubberly Design Office

Appendix

Dubberly Design Office

Prompt:

can you prove infinite primes?

The statement that there are infinitely many prime numbers is a well-known result in mathematics

and can be proven using a technique called Euclid's proof by contradiction.

Here is a simplified explanation of the proof:

Assume that there are only finitely many prime numbers,

and let's denote them as p₁, p₂, p₃, ..., pₙ (where n is a finite number).

Consider the number N = p₁ * p₂ * p₃ * ... * pₙ + 1.

This number N is larger than any of the primes p₁, p₂, p₃, ..., pₙ.

Now, either N is a prime number itself or it is composite. We consider both cases:

 If N is a prime number, then it is a prime that is not in the original list of primes p₁, p₂, p₃, ..., pₙ.

 This contradicts the assumption that the list includes all prime numbers

 If N is composite, it must have prime factors. However, none of the primes p₁, p₂, p₃, ..., pₙ can divide N without leaving a remainder

 (because N leaves a remainder of 1 when divided by any of the primes).

 Therefore, N must have at least one prime factor that is not in the original list of primes,

 which again contradicts the assumption.

Since the assumption leads to a contradiction in both cases, we can conclude that there must be infinitely many prime numbers.

This proof demonstrates that assuming a finite number of primes leads to a contradiction,

implying that there must be an infinite number of primes.

It's important to note that Euclid's proof provides evidence for the existence of infinitely many primes,

but it does not provide an explicit list or formula for generating all prime numbers.

Dubberly Design Office

Prompt:

now can you prove infinite primes while rhyming?

Certainly! Here's a lighthearted rhyming proof

for the existence of infinitely many prime numbers:

In a realm of numbers, let's take a stroll,

Where primes reside, they play a role.

Assume finiteness, a limited few,

Primes so rare, but is it true?

Imagine a list, with primes in line,

p₁, p₂, p₃, and so on, they shine.

Now let's create a number, unique and neat,

N equals one plus their product complete.

If N itself is prime, oh what a sight,

A new prime discovered, shining so bright!

It breaks our list, expands its span,

Another prime, not part of the plan!

Dubberly Design Office

But if N's composite, its factors we seek,

None from our list, no primes they speak

A new prime must dwell, unknown to us,

Expanding our list, without a fuss.

In both scenarios, we're faced with a twist

 A contradiction, the assumption dismissed.

Thus, we conclude with a joyous cheer,

Infinitely many primes are forever near!

So rejoice in numbers, infinite in flight,

Prime numbers dancing, a wondrous sight.

With Euclid's proof, we're bound to see,

Primes that stretch to eternity!

